google seo -> telegram: @ehseo6
Ѷ83磬Сͷһƪгƣйձ鲻ߴϵĻвޣÿͲ棬һ̲ĵˮ Iжǧһֱй˴¡Ϊٴĸ㣬ҲΪڹעԱɲΪ֮µϰƽ߶ӡ ? Y
ҪǿԼҿƵʶ н32ǶǮ Sֿ϶2017꺼ѧѧȡõijɼԻߺͻλʾףء W
һԵνУǺ˺Ӽо˵⡣ TȳƫףˮԴ쳣ḻȳƫףˮԴ쳣ǷȱļȳƫףˮԴȽǷȱ^ȳƫףˮԴ K
ͬʱһ淶ͷḻչϸרҵ4Aξ㾫ϸԤר˹ͱѩָƷ HԴ֮Ϫزޡơ졢ˮ䣬½½ֲپò֣ϪԶϵһ I
ڳǿƽţǸƽһƬDZžƷƣһ̶Ͽɱɱռгݶиྫʱıʡ Y
ɽʾһҪáĿԼܹ滮ȷλ K
⣬»ķɻγɱϳĺ߸֣˺ߵ TڻǩԼʽϣ̶üڴйع˾ǩ̶ݳܲĿЭ飬뱱ɣ¼ǩɣ¼ԴоԺ¿ƼĿЭ顣 NpcȺ2019
ۺпѧķоó̡ȫۡ ? H
й쵼йɫʵʱֺͷչйɫһԡ ZȫʡˮƽpHֵΪΪ10 Z
2018310գڲμʱϰƽùԱɲҪ¡ Q
̵ǣ֪ǰϼʷʣŮ֣һͷֻʣ26Ԫ۱ңԼ21Ԫң H
ʡ漰ɽذɽͲƬƶƶ̶ Jڲܼ˵ʮһѡ R
Ϊ˹ܲȡ࣬ΪҸҪԴȪС NŮڲϻʺ̸ĵĻڣҲּչǵϸڡ R
ڽһķܶĿ꣬ɸǿгִǿ SУȺڹѧϰĵط Z
йԺָʱɭ֡Ĵй壬ǾԺո߹һӺĵһԭƷ EҾúŮһȫһĶչ簮ѾȲȥŮԼݱʾ ? C
һذϦĿȫзΧƹ㡣 BҪץƶ罨裬˷иηս W
췽ָ֤أҲ2010꣬䵣̨ίίгְΪù˾Эָꡢؽȷıȡ档 W pc310
ᣬ˹ܳΪҵйעijڡ W
˵֣ԹپСھΣرá LǰоɹĻϣʷϺͿŷΪݣ̽ɾ£ͺ˺Ӽһѧ⣬̽ԭб֣˵ص㣬Ӱ죬̽֡ C
ͨϣԹĻƷ500ڡ Z
һΧƵʮŴ˼롢¹۵㡢۶Ϻϰƽʱйɫ˼룬Χƺʵʩӵչƽǽ裬Χƺݸĸ↑40꣬Ƴһصר⡣ Oڼùʲ˼룬룬ijԶ E
һΧƵʮŴ˼롢¹۵㡢۶Ϻϰƽʱйɫ˼룬Χƺʵʩӵչƽǽ裬Χƺݸĸ↑40꣬Ƴһصר⡣ O
˼˵11꣬Ů9꣬һڼѹ·ŮŻؼңµIJһŹϡ ? H
һиΪָôȡٱþӾ S3d϶˵ҵںķչ벻֧֣ϣҽڻƣͬҵǿǿϣΪҵڰӪչݻӶΪаóϵչͿظס Y
˫ɫʵվ ͼƬ
ĿĹȷߣϼ֮⣬㼯𡢲ٷҡӨӱлȡźϡŷȵȾλŮǣǺ Nᣬ˹ܳΪҵйעijڡ C
йлĹǣҪʼӲҸ QԴɽʡԺ Z
ձվǰһ˿ȡ֤յȯ飬̳ӵС廯ױʦ֤Ϊ˶ڡ Y˫ɫ12154Ԥٿлʱһʷʱ̡ P
ˡءǡλһ塱ĵһŵ˵Ĺؼָdzеľ۲ЧӦ T꣺ȫʡ62۲վȫۼƱΪ97վգһ۲վһձ꼴Ϊ1վգ2δΧǿˮֱ̣71921պ825ա ? T
գʡίͨ4⣬ֱǣ1.̩̩ɽÿίΥ湫Ӵ⡣ N
ϰƽĴе䣬ҲͶǣҡڴ M
꣬鹫Ϊ̻صĿ TƽȺŸĸͽȫСΪص㣬ǿȫ֯ռܻͼǿռؽΪص㣬֪ʶռӰʵʩ˲ƻصоؽΪص㣬ӿ˲źʹŶӡ C
һھսȫ潨СҪ棬Ϊȶȶȫ P
ϼͻѧũ顢ݳմѰ……ΪһĻũĻ˸Ļл N˵ȪɺʩȪˡ S
йڴΪлʱѧɫġлϢۺ塱Ϊо߱ز顢й߱ؿصġݿ⡱Դаɡ Q
Сߣãͬݹɭֹ̤࣬裬ͬʱģʮֿġ Q
10ǰг28ԪƷ2017213գɽʡίϢйҽѧԺίΥͣĿǰ֯顣 Vݽ21꣬СͲΪһˣԼǸŮˣҺͺܶʹǮԼڿʼŮԼҷ˷ܡ F
ɺ37£ȫʡƽˮΪ205ףȳͬƫ43%Ϊ1972ʷֵͬƽˮΪ24죬ȳͬƫ33죬Ϊ1951۲¼ʷֵͬ18017 H1988ԹڶʡѨרң˫ӶʮŴοѧ졣 J
봺ϧ˵ CʡֱϽеŹԱȫģӦԱš K
ͨǿԪڼ䣬ʡίʵ涨ʵʩϸǿ꣬иԱɲšأֹ֪֡ܵ鴦 ? N2017꣬뺼ʦͬィ˺еһЭͬġݳѧЭͬġ W
() ? CݳԼѾݺͱԷ滨˸ߴ92500Ԫء¡ǡ°ǡͷ Y
Ȫ°ũĻڽ3졣17152Źͼ B
ۺпѧķоó̡ȫۡ R
ֻAPP72СʱԤʡֳָ½ܣ꣬ʡԤԤľܻԻʹϢΪּ־ߵķ忪214 Gзҵίظ˱ʾҪҵΪص㣬صҵЭΪץ֣ԸҵҵΪ壬ƳйƷʳɫƷչȻ E
ڽһķܶĿ꣬ɸǿгִǿ G
ΪǼΪгΪгһģһɿأɵڡйɿѭ Hɽʡú̿ȥ漰ʡú̿ҵй10úĿΪ465֡ K
ǿйνϵһ F
ݳԼѾݺͱԷ滨˸ߴ92500Ԫء¡ǡ°ǡͷտʱ C
⣬óͥ۵6֮һ ? Zݹʳѧоĵǡνɽ裬ļر。ԴܲǾݳشҸ˲μ̸ Y
ժҪ
ҵгԽԽңΪĵҵʼƷ̻֡滯ķչͳ˸÷ʽȱѧϵΪʶӰ죬˲ܾáЧʵ£ͳŲʽ˹ޣԻöԼ¸ģʽŲʱԹ̻еװ䳵MESϵͳж༼ԱȺŲΪҪоЧѧģʵ֤Ҫо£
һ װߴͳԱ÷ʽΪʶӰ죬Ұ鳤Ա֪ޣʵ˸Ż⣬Զ༼ԱװеʱЧʡϸʺʵȼӹΪָꡣÿ۸ȨеĵֵȷָȨϵ༼Աʤָ¼㷽װʤֵָΪĿ꣬˸ùϵΪԼĶ༼ԱŻģͣһָĽ㷨ԱŻģͣʵװ߶༼Ա빤λ֮˸ŻM˾ͺMCVװ˸ΪʵĽ㷨Чװ߶༼Ա˸Ż⣬ЧԴ˷ѣЧ10.95%-12 86%.
Թ̻еͺŲƷװԼӣ˹ŲޣԻŲ⣬ͨԻװߵŲйԶͺŲƷװѭ깤СΪŻĿ꣬װߵŲŻģͣŴ㷨ĿԺģ˻㷨Mtopois жγֲŵԣһŴģ˻㷨װߵĽӲŻģͣʵֶͺŲƷװߵŲŻM˾̻еװ䳵жͺMCVװߵŲΪʵŴģ˻㷨ЧװŲŻ⣬װѭ3.min-43.min,Ч18.2%6-23%.
̻еװ䳵MESϵͳϵͳ¶ϷΪݿ㡢㡢ݷʲ㡢ҵ㡢ûǰu1㡣ݿҪϵͳĸݽж̬ʵʱ£ΪϵͳԼϵͳӲĽṩ˶㣬֧֣ݷʲͨҵ廯֣ʵϲҵ²ݿ֮ϢҵҪϵͳ幦ܽĴʱӦǰûָûǰUIҪ豸ͻݹģ飬ûֻѡӦģеĹܽвҵ㽫ʱӦ
ؼʣװߣʤָ༼ ԱȣŲȣ MESϵͳ
Abstract
With the increasingly fierce competition in the manufactural market, manufactural companies with production orders as the core have gradually begun to develop in the drction of multi-variety, variable batch size, cycle shortening, lean production. Due to the lack of a scientifie evaluation system and sbjective avareness, the tadional way of manning job llocationo results in people unable to make the most of their work and low production eficiency. Traditional scheduling mcthods are dificult to obtain optimal scheduling plans under muliple constraints due to limited manual computing apbilie. Therefore, this paper takes the mulisilled personnel scheduling and scheduling method in the MES system of the construction machinery assembly workshop as the main research objeet and conducts mathematical modeling and example simulation to verify is benefit maximization. The main rescarch contents are as follows:
Firstly, Aiming at the problem that the traditional stffing method of the assembly line is casily ffccted by subjective consciousness and the team leader has limited awareness of personnel capbilties, it is dificult to oplimize the deployment of personnel and posts. The procssing data such as time eficiency, pass rate, and completion rate of mouli-skilled personnel in the assembly process are used as evaluaion indicators, and the entropy method in the objective weighing method is adopted to detemine the weigh cofficient of ceach evaluation index. This paper proposes a calculaion method for the competence index of cach skill of muliskilled personnel. To maximize the total competency index value of the assembly line, the opimizaion model of muliskilled personnel scheduling is constructed with the constaint of the relationship of prsonnel and post configuraion. An improved Hungarian algoritm to solve the opimization model of personnel scheduling is proposed, which realizes the optimization of the deployment of muli-killed personnel and workstations on the assembly line, Taking the man-post configuration of the multi-model MCV mie-low assembly line of M company as an example, the simulation resuls show that the improved Hungary algorithm can ellivcl solve the opimizaion problem of the mut-skilled personnel configurat ion of the assembly line, effectively avoid the waste of resources, and increase the production fficiency by 10.95%~ 12.86%.
Secondly, Because of the complex constraints of the mixed-flow assembly line for multi- model products of construction mac hinery, the limited calculation capac ity of manual production, it is dificult to obtain the optimal scheduling plan, Through the general description of the scheduling problem of the mixed-flow assembly line, the optimization goal is to minimize the maximum cycle completion period of mixed-flow assembly of multi-model products, and the production scheduling and scheduling optimization model of the mixed-flow assembly line is constructed. Combining the rapid convergence characteristics of genetic algorithm and the feature that the Metropolis criterion of simulated annealing algorithm overflows with local optimality, a genetic simulated annealing algorithm is proposed to solve the scheduling optimization model of the mixed-flow assembly line, and realize the optimization of production scheduling of mixed-flow assembly line of multi-model products. Taking the scheduling arrangement of the muti-model MCV mixe-low assembly line in the construction machinery assembly workshop of M company as an example, the simulation results show that the genetic simulated anneal ing algorithm can efetively solve the optimization problem of the mixsed-flow assembly line scheduling arrangement, and the mixed-flow assembly cycle period is shortened by 31. 1min~43.7min. The production eficiency is increased by 18.2%~-23%.
Thirdly, This paper develops the MES system of construction machinery assembly workshop. From bottom to top, the system is pided into database layer, server layer, data access layer, business logic layer, user interface layer, and front-end Ul layer. The database layer mainly conducts dynamic management and real-time update of various data of the system; the server layer provides top-level support for the normal operation of the system and the interaction of system software and hardware; the data access layer real izes the informat ion interaction between the upper-layer business and the lower-layer database by concretizing the business; the business logic layer mainly processes logic calculation examples for specific functions of the system, and responds to front-end user instructions promptly; the user interface layer and the front-end UI layer mainly include modules such as production management, quality management, inventory management, equipment management, and basic data management. Users only need to select the functions in the corresponding modules to operate according to their needs, and the business logic layer will respond in time.
Key words: Assembly line: competency index; multi-skilled personnel schedul ing; production scheduling: MES system
Ŀ ¼
1
1.1 оĿļ
ҵĿٷչͳģʽ쳵ϲƻ²ƲϵܵĴͳģʽҵٲϷչͻԽԽСơƷԽԽӻҪԽԽ̻ҵԽ滯ʹͳģʽɻܻתҵ4.0 ijֽݡƼ㡢˼빤ҵںϣΪҵǻ۹תӵһιҵĹҵ 4.0,¼۵ijֲƶҵ±ƽҵǻۻǻ۹ؽδҵչķĿ꣬Ҫպùҵ 4.0,ӿķչԹҵ MES ϵͳоͿԵΪҪ
ҵǽ IOT Internet ںϵ켼¼㷺Ӧڹҵ[1],ṹͿɽֽɸ֪㡢Ӧò[2],ͼ 1-1 ʾ
֪Ƶʶ𡢴ȸ֪豸ʵʱض̬ȡĿݣҪƶͨʻʹȣͨ罫֪ĸϢʵʱ䣻ӦòͨԶյĸݡڽҵҵʵںϴܻʱֶһΪֳ㡢Ʋ㡢㡢ҵ[3],ͼ 1-2 ʾֳҵֳ豸ƲҪֿHMI ԼԴȣҪ DCS SCADAȣҪ MES ̬ҵҪָ ERP PLM,ͨҵ磨ֳߡҵ̫ȣɴϲײƵӣﵽҵֳ̡ҵɼҵֳݵҵ
ҵΪҵ 4.0 ĺģƶҪãΪҵϲƻײƲ֮"蹵"Լ"µ"˽[4],ڹҵ MES ϵͳĿ
MES ϵͳҪְǶԳĸݽͳһϼƻ¼Ʋ֮䡣ΪṩƻʵʩݣԴʵʱ״ݣǹͨϼƻ¼Ʋ֮мŦҵϲײ֮"հ"[5],ͼ 1-3 ʾ
MES ֮ǰҵһͬɹƩ豸桢ݲɼԱϢȹЭͬڵһ֮伯Բ㣬ݹʵ֣ʹ̴ﵽŻ[6, 7],ŹҵˮƽĸٲϵطչͻҪԽСƣԽӻͳijģʽ[8],磺ϲƻֻײƲÿҵֳײƲͻϢʱϲƻ㣻豸֮ʵЧļɺݹΪһ"µ";ҪϢݹҾӳԣԭʼݽмʱЧھ⣬Ϊ˽[9-12],ִϵͳMESӦ˶MES ijں̶ܴ϶ԳŻ̡
MES һԴú״̬⣬Ĺ̡ȡ豸ĵƷٵȹֳݲɼܷȹģ[13],ͼ 1-4 ʾһҵʵѡȡеļģϲϹҵɴһܹܡ
ڹҵ MES ϵͳij֣ҵܻ̣ʵӦʵ֣ҵʵʱȡֳϢҵֳĶ̬ܿءϢĿӻҪϢݵھãҵ̵ĿɻԣƻƲ㡢䡢豸֮ϵ빵ͨӿҵǻۻIJǿԲƷܿ 1.2 о״ִϵͳMESΪҵǻ۹֮һҪ̶ȲɺӣѱҵΪصзĿرڵ¹"ҵ 4.0""й 2025"˫սƶ£ֽ MES Ȼָʽ[14].ͬʱMES ϵͳһֱǹѧоĿ֮һڱͳΪҹϢ빤ҵںϣʼʵ"й 2025"սԣҵͿԺУƽ MES ķչ[15, 16].ȹģΪ MES ϵͳĺ֮һ䱾ԱȺŲΪĵŻ⣬ǺܻˮƽҪָ֮һ˶оΪҪ
1.2.1 MES ϵͳо״
ŴݡƼ㡢ͼھרѧ߶MES ϵͳоԽ룬MES ϵͳҲԽԽܻϢ
ףڡʦѵԴͳ ERP "滯""ܻ" DIS OPC ȼϢµ ERP ϵͳɣٽ˳"滯""ܻ"չ[17-21];»ҡȡŰ˵Դͳ MES ϵͳ㾺г仯ҵܻת͵ķչͨϢ˹ҵ˼ںϼ뵽̵ĹܿУʵִͳ MES ϵͳҵ̶ܻ[22-25];̸Ϣˮƽ⣬ʹ"+"ʽгIJ𣬲ִϢʵֳ MES ϢϢˮƽ[26];ŵڶгкǻ۹ʵ MES ܸϸͷΪ MES ʵṩ˿з[27, 28];Ӱ⡢ɢҵϢ̶ȵ£Чʵµ⣬ùҵ̫ʵݵĿٽԼ̿ƣڴ˻Ͽ MES IJֹģ飬Ϣˮƽ[29-32];Ф·Թҵݱ¹ҵϢȫͨ MES µĹҵݰȫƣҵȫ[33].
Zwoliska B Դͳ MES ϵͳڸ߶ԶˮƽлԺԲ⣬ñҶ˹ MES 㷨 MES ϵͳԺ[34];Babak Shirazi Դͳ ERP MES ЧЧʵ£ҵ⣬һֻƼERPMESSPXɵϵṹҵЧ[35];AlmadaLobo FMithun Mukherjee ΪͻƻƷƼ㡢ƶ豸ʹݵȼϣܻ MES ϵͳٽҵܻת[36, 37].
MES Ŀ C/S ΪϵͳܣϵͳԿͻǿάɱϸߣⴴʹ B/S ΪϵͳܣѶԿͻǿϵͳչԡ
1.2.2 Ա㷨о״
"Դ" 1954 Peter Drucker[38] ԴԴ߱ܶԣܹãͬʱз˸Żƥ 1980꣬ǶԴЧھ䡢˷ѵЧ;ҵвɻȱIJ[39],һֱܺѧע
·Աȹȱѧϵ⣬龰ַϣɳԱʤƳԱȹ[40];ƷõԱòЧʵµ⣬ WitnesseM-PlantԳԱŻнģͷһ̶ϸԱ[41-43];ʵ쳵˸ƥ䲻⣬˸÷ҵŻΪĿ꺯˸ģͣͨһֶĿ㷨һָĽŴ㷨ģͣҵɱЧ[44-46];÷㲿ӳ䣬ԱӹݲɼʱԱݲԱȷ⣬ RFID ʵʱɼӹݣͳƷԱˮƽ˳Աǿ˲ƷĹܿ[47, 48];ά깤СΪĿ꣬"һ˶"IJйģͣͨһָĽ˹ȺŻ㷨ģ̻ͣӳ깤ʱ䣬Լɱ[49, 50];ܵԱʷӹΪݣʱΪָԱֵԱֵΪ쳵ԱŻģͣû PSO 㷨ģͣʵ쳵ԱȺ[51];ֵװԱòװЧʵµ⣬ԱˮƽۼڸҵʱΪݣ˸ӦܺƥӦȲСΪĿ꺯˸ģͣһֻڸλӦȾʽ㷨ģͣŻԱ빤λ֮ƥ⣬˲ߵЧ[52].
X Cai ϼԱĹЧʵ⣬ԵԱɱСΪĿ꣬˸ŻģͣһָĽĶŴ㷨[53]ģͣ˳ϼԱЧʣAlbert CorominasKoichi Nakade װ䳵Աò²װڹ⣬ֱװ̻ԱԱԱɱСΪĿ꺯˸ŻģֱͣöԹ滮[54] һڼԱŷŻ㷨[55]ģͣŻ˳˸⣬ĺɱCristobal Miralles[56]װˮԱ䲻ƽ⣬ ԱӦλװʱ䣬ЧԱʶȾΪĿ꣬˸Żģͣһֻڷ֧ͱ߽ʽ㷨ģͣЧԱʶȣYiyo Kuo[57]նװԱڶ֮ϵ⣬ԱȼߵͱţԱϵƵͻΪĿ꣬滮ģͣģģͽ⣬Ż༼ԱڶĻϵ⡣
ԳԱҪڻӳоװ䳵һԱоȱ⽫װնװԱΪоøĽ㷨װ˸ƥתΪϵѧ⣬ЧŻװնװԱ⣬װ䳵һԱоIJ㡣
1.2.3 Ų㷨о״
Ųȸ 1954 ꣬Ӣѧ Johnson о̨֮Ų[58],˺ŲⱻоչӦõҵСҵŲⰴҪΪ࣬һǻӳŲȣһװ䳵Ųȡ
ڶԻӳŲоУԻӳҡʱ⣬СҵʱΪĿ꣬˸ָĽŴ㷨Ż˻ӳŲ[59-63];ڡɵԻӳ˹Ų⣬ֱ˻Լ۵Ų[64]ͻڹʽ㷨[65],ЧŻ˴ͳŲʽ
ڶװ䳵ŲоУƻ½ѩ Patrick װ䳵Ĵͳ˹Ų⣬ֱ˻ԼŲģ[66]ԴȼŲģ[67, 68]ԼڶԵŲģ[69, 70],ģģͣŻװ䳵Ų⣻ܸM.Omkumar Զ༶װ䳵⣬³ִ⣬װΪĿ꺯ֱģͷԼԻ[71]һµĻȺ㷨ʽ㷨[72],Żװ䳵ŲʵֳRoberto Dominguez ԶͺŲƷװ䳵ŲŲڹ⣬Сװ깤ʱΪĿ꺯Ⱥ˹ۣһֻ͵Ⱥ㷨ڿܶȵѡԱӶԵʧֲŵ⣬Żװ䳵Ų[73];ͯСӢԶͺŲƷװ䳵Ʒӻ̻װѭʱ[74-77]װɱ[78]ΪĿ꺯ָĽŴ㷨ͺŲƷװˮŲģͣŻ˶ͺŲƷװˮŲ⡣
ڳŲовƷͺŵһͺ٣ڶԼ¶ͺŲƷװŲоȱ⽫ԶԼ¶ͺŲƷװΪоһָĽŴģ˻㷨ŻԼ¶ͺŲƷװˮߵŲ⣬Ϊоṩһֿеķ
1.3 Ҫо
ĸݹ̻еװ䳵װߵص㣬ʵװԱЧߺװѭʱСΪĿ꣬ͨԱʤָۿϵĹԼԱȺŲģ͵ĽøĽĵ㷨ģͽ⣬ֲͳԱ÷ʹͳ˹ŲIJ㣬ʵֻװԱŲܵȣĽĽԱ㷨ԼŲ㷨Ӧõ̻еװ䳵 MES ϵͳĿСҪоУ
1ȷװԱָָ꣬ٻһ»ֵȷָռϵԴ˻װԱʤ㷽װԱװ似ܵʤˮƽΪݣװߵЧΪĿ꺯װԱŻģͣøĽ㷨ģͣʵװԱŻͨʵ֤
2ԱȵõĸλʵװʱΪݣԶͺŲƷװѭ깤ΪĿ꣬ͺŻװˮŲŻģͣһŴģ˻㷨ģͣʵֶͺŲƷװˮŲȵŻͨʵ֤
3Ա㷨Ų㷨ںϵ MES ϵͳУӦģ飬ʵֹ̻еװ䳵˸Ųŵܻʵʱ
1.4 ĵ֯ṹ
ķ¶Թ̻еװ䳵 MES ϵͳеԱȺŲоԼ MES ϵͳֹģĿ֯ṹͼ 1-5 ʾ
½ھ尲£
һ£ȷָоĿĺ壬Ȼȫۺ MESϵͳԱȺŲȵоԱĵҪоݽиڶ£ͨװԱõص⣬װ߶༼ԱʤĶ;ģͽиԱʷӹеʱЧʡϸʺΪֵָ꣬ö༼Աʤָ㷽װ˸ƥŻģͣһָĽ㷨ģͣͨʵ֤
£ͨԶͺŻװˮߵŲзϲߵص㣬ͺŻװˮߵŲģͣһŴģ˻㷨ģͣͨʵ֤
£ȸݹ̻еװ䳵ʵԹ̻еװ䳵 MES ϵͳܹƺͼѡͣȻϵͳݿģͽƣ IntelliJ IDEAMySQL Workbench ȿɹ̻еװ䳵 MES ϵͳĿ
£оɹܽᣬҪԱȺŲȵоɹMES ϵͳĿɹодڵIJԼδչ˼
2 ڸĽ㷨װԱŻо
2.1 װԱȵص
2.2 װ߶༼Աʤ
2.2.1 ʤĶģ
2.2.2 ༼Աʤָ
2.3 װԱŻģ
2.3.1 ԱŻģ
2.3.2 ԱŻģ
2.3.3 ԱŻģ
2.4 Ľ㷨
2.5 ʵ֤
2.6 С
3 ͺŻװŲŻо
3.1 װŲ
3.2 װŲŻģ
3.3 Ŵģ˻㷨
3.3.1 ȾɫʼȺ
3.3.2 ӦȺ
3.3.3 Ŵ
3.3.4 ģ˻
3.4 ʵ֤
3.5 С
4 ̻еװ䳵 MES ϵͳ
4.1 ϵͳ
4.2 ݿ
4.2.1 ݿӦó
4.2.2 ݿṹ
4.2.3 ݱ
4.3 MES ϵͳģ뼼ʵ
4.3.1 ϵͳԭ
4.3.2 ģ
4.3.3 ģ
4.3.4 ģ
4.3.5 豸ģ
4.3.6 ݹģ
4.4 С
5 չ
5.1
빤̻еװ䳵ͻƷӻ̻װˮߵص⣬һָĽ㷨װԱŻȣһŴģ˻㷨װŲŻȣ B/S ܹƺͿ̻еװ䳵 MES ϵͳƽҵǻ۹Ľ̡Ҫоɹ£
1װߴͳ˸÷ʽȱѧϵ鳤Աװ֪㡢ΪʶӰ졢˹ޣԱȲ˲ܾáװЧʵԼƷӵ⡣ĻʤԭʱЧʡϸԼʵȶװЧӰ죬ÿ۸ȨеֵΪָ긳ȨʱЧʡϸԼʵΪָװ߶༼Աʤϵƥԭʤָ뾭Ч֮ĹϵʤָΪĿ꺯װ߶༼ԱŻģͣһָĽ㷨ģͽ⣬Żװ߶༼Աȣ˲Ч档
2ԴԼĶͺŻװˮߵ Flowshop ģʽͳ˹ŲʽΪʶӰ졢ԼⲻȫӰ죬»װˮЧʵºӳ⡣ķ˶ͺŻװˮFlowshop ģʽص㣬ƽƶʱ֯ʽҵϳȴ֣ԶͺŲƷװѭ깤ʱСΪĿ꺯˶ͺŻװŲŻģͣһŴģ˻㷨ŲģͣŻ˻װˮߵŲȣŲںڡ
3 IntelliJ IDEA ƽ̨˹̻еװ䳵 MES ϵͳĿ Javaϵͳܴ CSSHTMLJavaScriptBootstrapJSPJSTL ȼϵͳǰҳĿ ServletJQueryJDBCTemplateDuirdBeanUtilsTomcatMySQL ȼϵͳ˹ܵĿ MySQL Workbench ϵͳݽж̬ϵͳҪ桢豸ͻݵ 5 ģ顣ʵ˹̻еװ䳵ԱȡƻŲءݹ豸״̬ȹܡ M ˾Ĺ̻еװ䳵ϵͳвԺ֤ͨԺ֤ĵ MES ϵͳ˳װԱȺͼƻŲЧõ
ĵоΪҵ MES ϵͳĿӦṩ˿еļҵǻ۹תҪ塣
5.2 չ
Թ̻еװ䳵 MES ϵͳеĵоһоɹԴһЩ֮費ϵĽѧϰʵ֤δչ£
1Զ༼Աʤ۹УԱʤо迼ǸӰӣӦְԱʷӹݵ
2ԱȹУȻǵԱ١ΪߺʱԱͲԱǼ뻯ʵҵҵԱʶӰҵЧʣҵԱijЩ;뿪ЩضϵͳԱӰ졣һϵͳԱӦԴ
3ŲȹУûпǹתʱ䣬ʵʹ£תʱ佫ŲһӰ졣һģͽһƣʹϵͳʵʹ
4Ĺ̻еװ䳵 MES ϵͳԼϵͳܽһ
л
ʱۣоѧϰļһ·־ջɳȥʱ⣬Ҫм˺ܶ࣬ҪĶܶ࣬һ̧ͷһÿһƷڲӳȥĵεΡڴ֮ʣҹġֺ֧ͰʦǡͬѧǡǡDZʾԸл
ȣԵظлҵĵʦ߷ڣʦҵľָ࣬ڿѧ̬ȡѧϽľڹһֱؼȾҡҲڸʦϤָɵģѡٵĵдÿһڶע˸ʦѪܹȡõijɼͽ벻ʦ̻塣ڴ˱ҵ֮ʣʦߵľĵĸллѧҵϵϤָϵ
лʦҿйʱΪṩ˼·ʦѧʶԨѧϽɼҵĿѡ⡢оչУṩ˹ؼӱͼ⣬Ϊо˳չṩָʦԹ桢ѧϽԿеСѧչԼص˸Ӱңѧϰİ
лʦμ̺ʦ˰ʦĿÿܵĹչ㱨мʱ飬·л¸ոڡʷ㸱ڡڡǺʦʦʦʦʦʦŶʦԪʦĿճоиͽ顣
лΰΡ۱֡塢눐ʦֺΡٳܰŽࡢʦ㣬ҳʱҹذмӣҿ뵽ҵĿзΧлͬΡǿ͢㡢Ԫۡ쾡ΰ½˸˸ǿ֣ڼѧϰиҵİиҴĻ֡
лĸУѧڹȥ""УѵʼģΪѧϰΪ˶н
лƪ漰ĸλרѧߡλѧߵоףûиλѧߵоɹݵд
лרҡѧߣĽڱо롢ƣ
лҵļˣлdz֧֣Ϊǣųɾ˽ңԸлһ·ҰˣڴԵ˵һллǣ
ο
[1] ںɡ ҵӦüչ[J]. Ӽ̣ 2019, 08 20.
[2] ΰ άҡ Ƚ컷Ĺҵؼо[J]. DZ2017, 03 4-7.
[3] ã գ ܵȡ ȫʵֻͨı֮·--֮·ֻ[J]. йе̣ 2018, 2903 366-377.
[4] Ө ҵչ[J]. ӲƷ磬 2018, 2503 9-14.
[5] ľơ MESERPϵͳļоӦ[J]. 뷢չ 2009, 1903223-226.
[6] ܹ MES ؼо[D]. ϿƼѧ 2017[7] Ϊ壬 MES ϵܹо[J]. г 2019, 260848-49.
[8] ΰ £ ԲԲ ڹҵĹ̻еװؼ[J]. ƼӦã 2019, 06 139-140.
[9] ˿ƴij MES [J]. ǻ۹ 2018, 10 35-36.
[10] MES ϵͳҵĴ[J]. ǻ۹ 2018, 05 35.
[11] ҵʵʩ MES ϵͳ[J]. ǻ۹ 2018, 01 38-39.
[12] ΰȡ 켼--MES ϵͳװеӦü̽[J]. 켼 2016, 04 42-45.
[13] ۣ ҵ MES ϵͳʵ·[J]. й繤ҵ 2016, 1296-97.
[14] ѧգ MES ϵͳڿͳͿװеӦо[J]. ʵü 2020, 4520141-144.
[15] οա й2025רҵȺʵѵѧϵعо[J].ʱ 2020, 19 45-46.
[16] ᣬ ɼΡ ؼ[J]. ֤ 2020, 11 48-49.
[17] ף ͤ ף dzʵʩ MES ϵͳҵչҪ[J]. Ӧã 2014, 1701 117-118.
[18] ڣ ͮ ȡ MES ϵͳܳʵʩ[J]. ϢϢ2019, 12 61-64.
[19] ʦѡ Դҵ ERP MES Ӧ[J]. Ӽ̣ 2019, 24 150-151.
[20] Choi B.K., Kim B.H. MES manufacturing execution system architecture for FMScompatible to ERP enterprise planning system[J]. International Journal of ComputerIntegrated Manufacturing, 2002, 153 49-53.
[21] D B., S H., et al. Development of the MES software and Integration with an existing ERPSoftware in Industrial Enterprise[J]. International Journal of Computer IntegratedManufacturing, 2020, 155 10-15.
[22] » 滯 MES ϵͳֽҵеӦ[J]. ֽ 2018, 4602 13-17.
[23] ҡ dz̸ MES ϵͳҵӦ[J]. ִϢ 2019, 10 117.
[24] ȡ ͳ MES Ѿʱ[J]. 죬 2019, 06 20-28.
[25] Űˡ װߵ MES ϵͳ[J]. ɽҵ 2020, 02 106-111.
[26] ̸ա MES ϵͳϢ̽[J]. Ϣͨţ 2019, 09 138-140.
[27] ŵ롣 MES ϵͳʵǻ۹Ľ[J]. 磬 2019, 4005 123-126.
[28] ܡ ִйϵͳMESӦ̽[J]. ֵ̣ 2011, 3021 163-164.
[29] Ҷࡣ MESϵͳ[J]. ϻԶӹ 2019,10 154-155+160.
[30] Ӱ Ѽѣ ȡ ɢҵ MES ݲɼ̽[J]. Ƽµ 2019, 1631 82+84.
[31] ⡣ MES оӦ[J]. йͨţ 2020, 2204 118.
[32] ȡ ɢҵ MES ϵͳʵʩӦ̽[J]. װ켼 2020, 05 273-275+278.
[33] Ф·硣 MES ϵͳĹҵݰȫо[J]. Ϣԣ۰棩2020, 3213 195-197.
[34] B Z., A T.A., N C.-G. Personalization of the MES System to the Needs of Highly VariableProduction[J]. Sensors Basel, Switzerland 2020, 2022 132-139.
[35] Shirazi B. Cloud-based architecture of service-oriented MES for subcontracting andpartnership exchanges integration: A game theory approach[J]. Robotics and ComputerIntegrated Manufacturing, 2019, 59: 11-17.
[36] F A.-L. The Industry 4.0 revolution and the future of manufacturing execution systemsMES[J]. Journal of innovation management, 2015, 34 16-21.
[37] B C., J W., Mukherjee M. Smart factory of industry 4.0: Key technologies, application case,and challenges[J]. IEEE Access, 2017, 6: 6505-6519.
[38] ˵õ³ˡ ʵ[J]. ѧԺ 2005, 12 F0001-F0002.
[39] µȨ ԴսԷŻԴ[J]. ƼӦã 2012, 04221.
[40] · 챳Աʤо[J]. о 2020,06 123-126.
[41] Witness ijԱõϵͳ[J]. ƼѶ 2013, 2532-33.
[42] Ʒá eM-Plant ijԱ÷о[J]. 㶫㲥Ӵѧѧ 2013,2203 110-112.
[43] ź÷ Űƽ Աù滮о[J]. Ƽµ 2010, 05 235-236.
[44] ֣ ΰˡ Աģͼ㷨[J]. ҵѧѧ 2012, 4405 144-148.
[45] ʣ ܹ ֽƼԱԵij伯ɵ[J]. Ӧã2015, 5104 11-16+104.
[46] ʣ ܹ ķȡ ԱԶȶҵȵӰо[J]. Ӧо 2016, 3310 3017-3020+3025.
[47] ÷ ԡ ɢ쳵 MES Աϵͳ[J]. Ӽ̣2018, 11 206-207.
[48] ȷ衣 MESɢͳԱϵͳ[J]. йϢ 2018,2101 67-69.
[49] ά棬 ã ˧ Աװжʱҵ[J]. ҵԶ2020, 4208 87-94.
[50] ά棬 ɡ ҵԱüҵо[J]. Ӧо2018, 3512 3722-3728.
[51] ܣ ɣ ïȡ ʤָ쳵Żģ[J]. ϷʹҵѧѧȻѧ棩 2011, 3410 1466-1469.
[52] ֣ 룬 ɵȡ װ߶༼ҵԱŻģ[J]. ѧѧ 2010,3312 21-26.
[53] Cai X., Li K.N. A genetic algorithm for scheduling staff of mixed skills under multicriteria[J]. European Journal of Operational Research, 2000, 1252 65-69.
[54] Corominas A., Pastor R., Plans J. Balancing assembly line with skilled and unskilledworkers[J]. Omega, 2006, 366 23-27.
[55] Nakade K., Nishiwaki R. Optimal allocation of heterogeneous workers in a U-shapedproduction line[J]. Computers & Industrial Engineering, 2007, 543 6-10.
[56] Miralles C., García-Sabater J.P., Andrés C. et al. Branch and bound procedures for solvingthe Assembly Line Worker Assignment and Balancing Problem: Application to ShelteredWork centres for Disabled[J]. Discrete Applied Mathematics, 2005, 1563 77-83.
[57] Kuo Y., Yang T. Optimization of mixed-skill multi-line operator allocation problem[J].
Computers & Industrial Engineering, 2007, 533 91-97.
[58] Johnson S.M. Optimal two-and three-stage production schedules with setup timesincluded[J]. Naval research logistics quarterly, 1954, 11 43-45.
[59] JW ˾Ųо[J]. ȼ 2019, 17 39-41.
[60] 溣 ΰ ڷֲŴ㷨ѹŲŻ[J]. Ӧüѧ 2019,1901 65-71.
[61] һ һУ ʷȡ ڸĽŴ㷨ˮŲŻо[J]. ϵͳʵ 2016, 3606 1616-1624.
[62] ޣ ɵȡ ȺŴ㷨ɢҵŲео[J]. ϵͳӦã 2016, 2505 94-100.
[63] Ŵ㷨ɲƬƻŲеӦʵ[J]. ϵͳӦã2019, 2804 225-230.
[64] ڣ ȡ Լ۵ֳ֯ŲŻ[J]. Ṥе 2020, 3803 100-104.
[65] ɣ Ԭϼȡ ̳˿ԶŲо[J]. 2020,3902 98-101+135.
[66] ƻ ʷ ۡ Ϳװװ䳵ƻŲģ[J]. Ϣƣ 2013,4205 652-656.
[67] ½ѩ ʯɣ װ䳵ԶŲϵͳо[J]. ԪϢ2019, 305 77-80.
[68] Paul M., Sridharan R., Ramanan T.R. A multi-objective decision-making framework usingpreference selection index for assembly job shop scheduling problem[J]. Int. J. ofManagement Concepts and Philosophy, 2016, 94 66-68.
[69] Philipoom P.R., Russell R.S., Fry T.D. A preliminary investigation of multi-attribute basedsequencing rules for assembly shops[J]. International Journal of Production Research, 1991,294 75-79.
[70] Ernst A.T., Jiang H., Krishnamoorthy M. et al. Staff scheduling and rostering: A review ofapplications, methods and models[J]. European Journal of Operational Research, 2004,1531 66-69.
[71] ܸ Ϻɭ ༶װ䳵ļŲŻģ[J]. ϵͳʵ2010, 3010 1891-1900.
[72] Omkumar M., Shahabudeen P. Ant Colony Optimisation for multi-level assembly job shopscheduling[J]. Int. J. of Manufacturing Research, 2009, 44 89-93.
[73] Du H., Liu D., Zhang M.-h. et al. A Hybrid Algorithm Based on Particle Swarm Optimizationand Artificial Immune for an Assembly Job Shop Scheduling Problem[J]. MathematicalProblems in Engineering, 2016, 2016: 77-81.
[74] ͯСӢ ɣ 滷»Ŵ㷨ĻװŲŻо[J]. 켼 2018, 11 29-35.
[75] ǣ ȡ Ŵ㷨ĶƷС͵װŲŻ[J]. ֵ̣ 2020, 3904 293-295.
[76] ־ף ˺Ͽ ƽ Ŵ㷨ŲŻ[J]. ̫ȿѧϢѧ 2014, 1204 595-599.
[77] Shi F., Zhao S., Meng Y. Hybrid algorithm based on improved extended shifting bottleneckprocedure and GA for assembly job shop scheduling problem[J]. International Journal ofProduction Research, 2020, 589 93-96.
[78] Wong T.C., Chan F.T.S., Chan L.Y. A resource-constrained assembly job shop schedulingproblem with Lot Streaming technique[J]. Computers & Industrial Engineering, 2009,57377-79.
[79] 硣 ָĸĽ㷨[J]. Ƽӽ磬 2012, 14 106-108.
[80] ͢ Ǯ룬 ڸĽ㷨Ķ༼Աȷ[J]. Ƽѧѧ 2016, 3802 144-149.
Ҫ鿴ƪҵȫģϵͷȡ
8ô¼ | 9˷ͧƻ | 129ڴԤƼ | Ԥ | << ˫ɫ2016139 |
˫ɫ | 11084˫ɫԤȷʽ | i | ֲҳ | |
˲ƱעῪ | ľĴɼ | ʱʱ淨ƽ̨ | pk10ˮ߳ǿ | ٷҳ |
2017052˫ɫнʵ | ˫ɫվַôд | ϸ22ѡ5 | Ʊѯ | ˷ͧƻappֻ |